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1. INTRODUCTION  
 
The density of the Earth’s upper atmosphere is tenuous, yet substantial enough to exert 

significant drag on orbiting spacecraft and debris. Understanding this drag is complicated by the 
fact that this region is subject to highly variable external drivers from above and below. One of 
the major sources of atmospheric drag estimation errors in low Earth orbit altitudes originates 
from the thermospheric mass density variability. Other error sources include neutral winds and 
drag coefficients uncertainty as well as charged particle drag effects under some circumstances. 
The ionized constituents of this region also affect telecommunication and navigation, motivating 
numerous observational and modeling efforts since the dawn of space exploration. While the 
recent availability of global observations of ionospheric parameters, especially from GPS 
receivers on low Earthorbiting platforms, has motivated a number of attempts to assimilate 
ionospheric data, assimilation of sparse irregularly distributed thermospheric observations 
remains a daunting task. 

Applications of the Kalman filter [Kalman, 1960] and its variants for assimilation of 
ionospheric observations to first principle ionospheric models have been shown to be effective 
[e.g., Komjathy et al., 2010; Khattatov, 2010, and references therein]. On the other hand, 
thermospheric data assimilation applications have so far been limited largely by a lack of 
operational monitoring of thermospheric parameters. For instance, Minter et al. [2004] and 
Codrescu et al. [2004] presented Observing System Simulation Experiments (OSSEs) of the 
column-integrated ratio of atomic oxygen and molecular nitrogen. Note that OSSEs assimilate, 
for a given realistic observing system, synthetically generated observational data often sampled 
from model simulation results, in place of actually observed values. 

One of the objectives of the project was to improve the thermospheric mass density 
specification by synthesizing a host of global observations of the thermosphere and ionosphere 
with a general circulation model and by characterizing the density variability associated with 
various external forcing. Another objective was to demonstrate how the information content of 
the geospace observing systems can be maximized by taking advantage of the intimate coupling 
between the thermosphere and ionosphere described in general circulation models (GCMs), with 
the help of the latest ensemble Kalman filtering (EnKF) techniques [e.g., Evensen, 1994, 2009].  
Finally the third objective was to investigate the source(s) of forecasting error in 13 neutral 
density storms identified by AF Space Command (B. Bowman, personal communication).   

The work comprises of two parts:  Part I Thermospheric mass density specification using 
an ensemble Kalman filter and Part II Space-based observations related to neutral density 
upheavals lead.  Part 1 covers the first and second objectives, whereas Part II deals with the third 
objective.  Section 2 describes the methods.   The results from Parts I and II are presented in 
Sections 3 and 4, respectively.  Finally conclusions are given in Section 5.    
 
2.  METHODS 

 
The global neutral mass density specification can be greatly improved by synthesizing 

thermospheric and ionospheric observations into general circulation model with the help of  
an advanced data assimilation methodology. For this purpose, we examine the utility of ensemble 
Kalman filtering (EnKF) techniques [e.g., Evensen, 1994, 2009] in assimilating a realistic set of 
space-based observations of the upper atmosphere into a general circulation model of the 
thermosphere and ionosphere. Because the neutral mass density is a derived quantity, given as a 
function of primary physical variables of atmospheric temperature, pressure, and compositions 
described in general circulation models, the problem at hand is the inverse problem of inferring 
these primary physical variables from indirect observations of neutral mass density and electron 
density. Unlike earlier applications, our approach allows simultaneous assimilation of 
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thermospheric and ionospheric parameters by taking advantage of the coupling of plasma and 
neutral constituents well described in thermosphere and ionosphere general circulation models. 
Specifically, the feedback between the thermosphere and the ionosphere is consistently accounted 
for in both the analysis and forecast steps of Kalman filtering in a systematic manner. 

An EnKF assimilation system has been constructed using the Data Assimilation Research 
Testbed (DART) [Anderson et al., 2009] and the Thermosphere-Ionosphere-Electrodynamics 
General Circulation Model (TIEGCM) [Richmond et al., 1992], two sets of community softwares 
offered by NCAR. The DART implements a wide variety of ensemble filter assimilation 
algorithms [e.g., Evensen, 1994; Keppenne and Rienecker, 2002; Mitchell and Houtekamer, 2000; 
Anderson, 2001] and is carefully engineered to make it straightforward to add new compliant 
models. An OSSE designed for a global ionosonde network by using this EnKF system [Matsuo 
and Araujo-Pradere, 2011] suggests that the global ionospheric specification significantly 
benefits from better constrained thermospheric states attained through the self-consistent 
treatment of ionospheric and thermospheric states in assimilation algorithms. 

We use an EnKF data assimilation procedure that has been constructed with the Data 
Assimilation Research Testbed (DART) [Anderson et al., 2009] and the thermosphere-ionosphere 
electrodynamics general circulation model (TIEGCM) [Richmond et al., 1992], two sets of 
community software offered by NCAR. Descriptions and applications of this EnKF data 
assimilation procedure can be found in the works of Matsuo and Araujo-Pradere [2011], and Lee 
et al. [2012].  We have assimilated the neutral mass density data sampled from the Air Force (AF) 
High Accuracy Satellite Drag Model (HASDM) into the NCAR- Thermosphere-Ionosphere-
Electrodynamics General Circulation Model using an ensemble Kalman filter assimilation 
procedure, and adjusted both neutral temperature and major composition mass mixing ratio 
globally.   

Perfect model experiments were used to demonstrate the effectiveness of this EnKF 
system to improve the neutral mass density specification from assimilation of CHAllenging 
Minisatellite Payload (CHAMP) in-situ neutral mass density as well as COSMIC electron density 
profiles.  See Appendices 1 and 2 for a summary of the upper atmosphere data assimilation using 
the DART/TIEGCM assimilation system.  

 
 
3. THERMOSPHERIC MASS DENSITY SPECIFICATION USING AN 

ENSEMBLE KALMAN FILTER 
 
 We investigated the impact of assimilating the neutral mass density data sampled from 
the Air Force (AF) High Accuracy Satellite Drag Model (HASDM) into the NCAR-TIEGCM on 
the global neutral mass density specification.  The global HASDM mass density data from 200 to 
500km, sampled with the resolution of 30o in latitude, 45o in longitude, and 100km in height, 
were assimilated every 3 hours to adjust the TIEGCM state variables including temperature and 
major compositions (i.e., atomic oxygen and molecular oxygen mass mixing ratio).  Note that in 
the TIEGCM the molecular nitrogen mass mixing ratio is specified so that the sum of mixing 
ratio for major species (i.e., atomic oxygen, molecular oxygen, and molecular nitrogen) sums up 
to one.  As described in Matsuo, et al., 2013, the forward (observation) operator for the neutral 
mass density is non-linear, and the total number of ensemble members used in EnKF experiments 
is 96. Filtering experiments have been conducted with the assumption of no significant model 
biases, and observing system simulation experiments allow us to assess the effectiveness of 
assimilation algorithms and strategies as well as the impact of different types of observations on 
the assimilation analysis.  As a measure of the analysis accuracy, we use the root-mean-square 
deviation (RMSD) of the global neutral mass density analysis from the “true" density. (Note that 
a control simulation that represents the “truth” is not part of an ensemble of model forecasts used 
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to obtain the data assimilation analysis, even though it is simulated by using the same forecast 
model.) Figure 1 shows the global RMSD estimated from the entire model grid points in pressure 
levels 14-29 (corresponding to about 190 to 470km). The reduction of RMSD is clearly 
demonstrated over the course of two days.  In comparison to similar filtering experiments with in-
situ mass density observations from the (CHAMP) satellite, where the impact is limited to 
pressure levels 19-24, that assimilation of HASDM data impacts the entire TIEGCM model 
domain.    
 

                    
 
 
 
 
 
 
 

An article describing the results has been published in Journal of Geophysical Research 
(Matsuo et al. 2013).   Matsuo (2013) presents the utility of ensemble Kalman filtering (EnKF) 
techniques to effectively assimilate a realistic set of space- and ground-based observations of the 
thermosphere and ionosphere into a general circulation model (GCM). 
 Since the upper atmosphere is strongly driven by external forcing, forcing parameter 
specifications in thermosphere-ionosphere general circulation models greatly influence the model 
performance and also the quality of assimilation analysis.  The driver estimation described in 
Matsuo, et al., 2013 has been attempted with the HASDM data set, and yielded a similar result as 
the case with the CHAMP data.  This suggests additional sampling of the neutral mass density 
gained by the use of HASDM may not have direct impact on estimation of the driver (i.e., solar 
EUV flux proxy).  Driver estimation and bias correction schemes are still under investigation 
with the support from the AFOSR. 
 A manuscript describing the effort described above will be submitted to Space Weather 
Journal, and we are planning to transition the version of DART/TIECGM software designed to 
assimilate the HASDM data to AFRL for research and development efforts lead by Dr. Chin Lin.  
 
 
 
 
 

Figure 1. The global root-mean square deviation (RMSD) of the 
neutral mass density analysis from the “truth" is shown for March 
21-23, 2007. The global RMSD value is normalized by that of the 
1st assimilation analysis to display how the RMSD varies relative 
to its pre-assimilation value in percentage. 
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4. SPACE-BASED OBSERVATIONS RELATED TO NEUTRAL DENSITY 
UPHEAVALS LEAD 

 
We investigated the source(s) of forecasting error in 13 neutral density storms identified 

by AF Space Command (B. Bowman, personal communication).  Our final study used 11 of these 
events; the two remaining events likely had the same source of error, described below, but were 
too close in time to previous storms to have the effects adequately separated.   We compared the 
11 “problem storm” events to 11 control events within the same time frame, 2004-2005, which 
appeared to be adequately forecast.  Most of the problem storms were preceded by storm sudden 
commencements, most of the control storms were not, and thus, one implicit difference appeared 
to be a shock preceding the problem storms. 

To further investigate similarities and differences between the two storm types, we used a 
superposed epoch analysis (SEA) of the density data from the CHAllenging Minisatellite Payload 
(CHAMP) satellite, along with several data sets from the Defense Meteorological Satellite 
Program F-15 spacecraft, and ground based geomagnetic indices.  The SEA revealed that, despite 
being stronger storms by virtually every characterization, the problem storms did not achieve the 
same level of density upheaval as the control storms.  Further, the return to normal density (lower 
temperature) levels was very fast in the problems storms compared to the control storms.  In fact, 
some of the problem storms showed evidence of  “overcooling.”  Our research breakthrough 
came with the acquisition of data from the Thermosphere Ionosphere Mesosphere Energetics and 
Dynamics (TIMED) Sounding of the Atmosphere using Broadband Emission Radiometry 
(SABER) instrument [Russell, et al., 1999]. SABER’s radiometer scans Earth’ s limb from a 
tangent altitude of 400 km down to the Earth’s surface, recording measurements of infrared (IR) 
radiance in spectral channels including the one for nitric oxide (NO) at 5.3 µm [Mlynczak, 1997]. 

The superposed epoch analysis shows the problem storms have a strong positive Dst initial 
phase (Fig. 2a) followed by a sharp downturn to a median Dst minimum = -102 nT.  In 
comparison the control events display a slow, monotonic Dst-decrease to -81 nT.   The neutral-
density response for the control storms (Fig. 2b) is a slow-rise, long-duration perturbation: +120 
% in 20 hours.   Density rises faster in the problem storms: +83% in six hours. Despite a larger 
Dst excursion, the problem-storm neutral density abruptly plateaus at levels below those of the 
control storms.  Thus, the magnitude of the neutral density response is, in general, not 
commensurate with the large negative values of problem-storm Dst.  (A Wilcoxon rank sum test 
shows the control- and problem-storm NO median values to be different at the 99% significance 
level). The problem-storm elevated Ap index (Fig.2c) also fails to predict the plateau-response in 
neutral density. The root of the forecast discrepancy is the substantial NO infrared (IR) emission 
(Fig. 2d) during problem storms.   The NO vibration-rotation bands act as an IR thermostat 
[Mlynczak, et al., 2003]. As shown by Maeda, et al., 1989, NO cooling can damp the 
thermospheric temperature and density response. Lei, et al., 2011 report some events show 
“overcooling”, with the thermosphere more contracted after the storm than before. 

We argue that the path to the unusual NO emissions is a result of coronal mass ejection-
driven sheath-enhanced storms that alter magnetosphere-ionosphere coupling via particles and 
Poynting flux. The main phase Poynting flux deposition is similar for problem and control 
storms, however DMSP data reveal excess low-energy particles during the initial and main phases 
of the problem storms. Comparing the DMSP <1 keV electron energy flux, we note a 
substantially higher flux for the problem storms than control storm within about two hours of the 
time Dst reaches the -75nT level (a critical storm level threshold, according to AF Space 
Command).  These particles, along with Poynting flux, contribute to immediate upper 
thermosphere density uplift [Zhang, et al., 2012 and Deng, et al., 2013].  The ~1 keV electrons 
produce NO above 120 km [Bailey, et al., 2002].  DMSP data also reveal an enhancement in the 
1.4-4.6 keV electrons. These electrons contribute strongly to thermospheric NO production 
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between 100 and 110 km [Bailey, et al., 2002, Richards, 2004]. During the 6-hr interval 
surrounding most problem storm onsets, DMSP ion energy flux (6.5-30 keV) also increases.  
Galand, et al.,1999 modeled a > 50% increase in NO density in the E region from this ion 
population. They noted that the ion-driven NO production tends to be on the nightside where the 
NO lifetime is many hours.     

Typically, significant, storm-driven thermospheric NO enhancements develop a few hours 
after storm onset [Lu, et al., 2010]. Figure 2d shows the early increase in problem-storm NO 
energy flux beginning shortly after storm threshold. We believe that excess low-energy particle 
precipitation likely seeds the excess NO production.  The fast rise of problem-storm NO emission 
is also aided by the increase in high-latitude Poynting flux as the IMF turns southward. Increasing 
temperatures associated with Joule dissipation of storm-time high-latitude Poynting flux 
contributes further to NO production and excitation [Barth, 2010].   

We compared our storms to available storm lists and determined that the vast majority of our 
storms are associated with solar ejecta.  Some Earth-arriving, solar ejecta arrive are preceded by 
shocks.  If it exists, the sheath region of a geospace storm is a zone of compressed solar wind 
between the shock front and the ejecta’s leading edge. Consistent with solar wind sheath 
structures, the distinguishing features of the problem storms are a leading period of enhanced 
solar wind density, nsw; and a leading interval of high solar wind dynamic pressure, Pdyn, and 
enhanced interplanetary magnetic field (IMF) magnitude, BTot. Guo, et al., 2011 reported that 
solar wind coupling, and energy transfer inside the magnetosphere, differ for sheath portions of 
geospace storms relative to the ejecta portions. Our problem storms share many attributes of the 
sheath storms analyzed by the Guo, et al. team including the profiles of the nsw, Pdyn, and IMF Bz. 
(Note: their ZEH corresponds to Dst-minimum during stronger storms.)  Our control storms and 
their ejecta (non-sheath) storms have many common elements. Our control storms are probably 
slower ejecta-driven events. 

Why are the low-energy particles so prominent during the problem storms? We believe there 
are three factors:  Magnetospheric compression, solar wind/IMF pre-conditioning and solar cycle 
dependency.  We are engaging the space weather research community in a modeling effort to 
address these factors.  We have provided two of the magnetospheric general circulation model 
teams and one of the inner magnetosphere modelers with the data from three of the storms we 
studied.  We hope to see modeling results from these events by the end of 2013.   

In summary showed evidence that solar wind density enhancements and pressure pulses can 
lead to intense low-energy particle precipitation and an associated, but unexpected, damping of 
thermospheric density response.  Ground-based indices, used as proxies for thermospheric energy 
deposition, fail to capture these interactions in forecasting algorithms.   Superposed epoch 
comparison of a group of poorly specified neutral density storms suggests an event-chain of: 1) 
Multi-hour, pre-storm solar wind density enhancement, followed by solar wind dynamic pressure 
pulses that trigger excess low-energy particle flux to the upper atmosphere; 2) Enhanced 
production of thermospheric Nitric Oxide (NO) by precipitating particles and storm heating; 3) 
NO infrared cooling and damping of the thermosphere; 4) Mis-forecast of neutral density.  In the 
control storms these features are absent or muted. These problem neutral-density storms reveal an 
element of “geo-effectiveness” that highlights competition between hydrodynamic aspects of the 
solar wind and other interplanetary drivers. 

We provided our results to Mr Bruce Bowman of AF Space Command, who verified that the 
phenomena we describe has been present in a large number of storms.  We have briefed our 
results to AFRL/RV and the IMPACT group at Los Alamos National Laboratory in April 2013 
and to the Coupling Energetic and Dynamics of Atmospheric Regions (CEDAR) community in 
June 2013.  Further we have requested additional data and event examples from AF Space 
Command in April 2013. We wish to determine if a proxy for the nitric oxide effect can be 
produced. To date we have not received this additional data.  
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